
1

Some content taken from Programming the Raspberry Pi: Getting Started with Python, Simon Monk © J I Davies, 2013

The Python Hangman Game

Now with Python, we cannot create physical on screen drawings, so this version of Hangman will

simply count down how many lives we have left.

In our case we’re also going to let Python randomly select a word from a list of words we will have

already coded into the game. For this we need a list of strings, like this:

words = [‘chicken’, ‘dog’, ‘cat’, ‘mouse’, ‘frog’]

What we’re going to do is follow this step by step guide, first making the various parts of the games

functions, then sticking them all together to be able to play the game!

Getting a Random Word

To start a game, we will need a random word from our string that the player will have to guess.

Create a new Python code window in IDLE 3, and try this code out, be sure to save it!

#04_04_hangman_words

import random

words = ['chicken', 'dog', 'cat', 'mouse', 'frog']

lives_remaining = 14

guessed_letters = ‘’

def pick_a_word():

 word_position = random.randint(0, len(words) - 1)

 return words[word_position]

print(pick_a_word())

When you run this, you’ll just get a print out of a random word from your String, feel free to change

your string with different values if you wish!

Making a Play Function

What we now need is a function; this is where we will make the game physically “play” so to speak.

Go back to your #04_04_hangman_words file, and then “Save As” that as “python_game.py”.

We’re now going to start from our previous code we wrote to make up the rest of the game.

Remove the following line of code, as we needed this only for testing:

print(pick_a_word())

2

Some content taken from Programming the Raspberry Pi: Getting Started with Python, Simon Monk © J I Davies, 2013

Now we’ll need the following:

def play():

 word = pick_a_word()

 while True:

 guess = get_guess(word)

 if process_guess(guess, word):

 print('You win! Well Done!')

 break

 if ==you’ll need to work out this bit:

 print('You are Hung!')

 print('The word was: ' + word)

 break

Ok, so now you’ve got this code, there’s an If statement incomplete.

Here’s a hint, the IF statement is there to tell the user they have no lives left, you’ll need to use the

lives_remaining variable and one of the following operators:

• == Equals

• != not equals

• > greater than

• < less than

• >= greater than or equal to

• <= less than or equal to

Note the indentation you use is important; it should look like this when in IDLE:

3

Some content taken from Programming the Raspberry Pi: Getting Started with Python, Simon Monk © J I Davies, 2013

We cannot run this code we have at the moment because the functions get_guess and

process_guess don’t exist yet.

Firstly, add this code to your game:

def pick_a_word():

 word_position = random.randint(0, len(words) - 1)

 return words[word_position]

This picks a word from your list.

Getting a Guess

We need a way to tell the player how they’re doing, and what the word looks like. For this we’ll

create a function, as follows:

def get_guess(word):

 print_word_with_blanks(word)

 print('Lives Remaining: ' + str(lives_remaining))

 guess = input(' Guess a letter or whole word?')

 return guess

What we are doing here is printing the status of the players guessing efforts, from our

“print_word” function we’ll be adding later.

Then we print the amount of lives remaining to the player using print(). Finally we are returning

guess, which is what the user entered.

4

Some content taken from Programming the Raspberry Pi: Getting Started with Python, Simon Monk © J I Davies, 2013

Printing the Word

We’re going to keep the player updated after each guess of how their guessed word is looking, and

as to what letters they’ve guessed. So this is where we need our “print_word” function. To

display and update this, we’ve created a String variable at the beginning of the guide:

guessed_letters = ‘’

By using this String, we can store the word in its current state every time the player makes a guess.

You’ll need all the code:

def print_word_with_blanks(word):

 display_word = ''

 for letter in word:

 if guessed_letters.find(letter) > -1:

 # letter found

 display_word = display_word + letter

 else:

 # letter not found

 display_word = display_word + '-'

 print(display_word)

This is a loop that compares the letter the player entered with every letter of the randomly selected

word.

It adds a hyphen (-) if the letter is guessed wrong, otherwise it will provide the position of the letter

in our String.

Processing the Guess

When a player guesses, they will either be entering a single letter, or the whole word. Therefore we

need to use an IF in the process_guess function, to tell the game which results to return after

the user enters their guess:

def process_guess(guess, word):

 if len(guess) > 1 and len(guess) == len(word):

 return whole_word_guess(guess, word)

 else:

 return single_letter_guess(guess, word)

Here, if the guess length is more than 1, then we’ll return “whole_word_guess”, otherwise it’ll

return the “single_word_guess”, these are explained on the next page.

5

Some content taken from Programming the Raspberry Pi: Getting Started with Python, Simon Monk © J I Davies, 2013

Adding the Single Letter and Whole Word functions

These three functions are important, as they decide what the game will do after a player makes a

guess. We return true if the guess was correct, and false if it was incorrect.

Copy this code snippet to your program:

def whole_word_guess(guess, word):

 global lives_remaining

 if guess.lower() == word.lower():

 return

 #the word guessed is right, what should be returned?

 else:

 lives_remaining – 1

 #the above is also wrong, can you see why and fix it?

 #this is to do with the syntax of adding to a variable

 return False

def single_letter_guess(guess, word):

 global guessed_letters

 global lives_remaining

 if word.find(guess) == -1:

 # letter guess was incorrect

 lives_remaining = lives_remaining – 0

 #the above line of code is wrong, can you see where?

 guessed_letters = guessed_letters + guess.lower()

 if all_letters_guessed(word):

 return True

 return False

def all_letters_guessed(word):

 for letter in word:

 if guessed_letters.find(letter.lower()) == -1:

 return False

 return True

play()

Here’s a test, I’ve broken this snippet, as I’ve commented above where you need to try and work out

and fix them.

If you’re stuck, give me a shout.

6

Some content taken from Programming the Raspberry Pi: Getting Started with Python, Simon Monk © J I Davies, 2013

Playing the Game

You should now be able to run this without any errors. If there are errors, check your syntax, and

then ask for the solution print out!

There are some limitations during game play, but you can type either a letter in lower or upper case

and it will still guess them and process the guesses correctly.

