| Topic: Number basis Specification reference: 3.3.1 & 3.3.2 | AQA U | |---|-------------------------| | Q1. | | | State the denary representation of the binary number 10010111 | [1 mark] | | | | | Q2. | | | State the denary representation of the binary number 10111010. | [1 mark] | | | | | Q3. | | | State the hexadecimal representation of the denary number 125. You m working. | ust show your [2 marks] | | | | | | | | Q4. | | | Give one reason why programmers often use hexadecimal, instead of bir | nary, to | | represent numbers. | [1 mark] | | | | | | | | Q5. | | | State the hexadecimal representation of the binary number 1110. | [1 mark] | | 1 | \cap | 6 | | |---|--------|---|---| | • | V | v | • | | working. | denary representation of the hexac | lecimal number 40 | [2 marks] | |--|--|--------------------|-------------------------| | | | | | | Q7. | | | | | State the k
working. | inary representation of the hexad | ecimal number CE | 2. You must show your | | working. | | | [2 marks |)8. | | | | | Place thes | se three numbers into order of size | (1–3 where 1 is t | he largest and 3 is the | | Place thes | se three numbers into order of size | (1–3 where 1 is to | he largest and 3 is the | | Q8. Place thes smallest). | | | he largest and 3 is the | | Place thes | Number | | he largest and 3 is the | | Place thes | Number The denary number 12 | | he largest and 3 is the | | Place thes
smallest). | Number The denary number 12 The binary number 1110 | | he largest and 3 is the | | Place thes smallest). 29. What is th | Number The denary number 12 The binary number 1110 | Order (1–3) | [2 marks | Topic: Number basis | Specification reference: 3.3.1 & 3.3.2 # Mark scheme # Q1. | - | | | |-----|-----|---| | 1 4 | F1: | 4 | | | 51, | | | | | | | | | | | | | | # **Q2.** | 186; | 1 | |------|---| | | | #### Q3. | 7D; | 2 | |--|---| | If there is no hexadecimal answer then do not reward any working; | | | If the answer given is 7D then reward any attempt at working; | | | If the hexadecimal answer given is not 7D then a maximum of 1 mark can be awarded for any of the following working out stages: | | | convert to binary 0111 1101 convert each of their nibbles to hex A. If incorrect bit pattern is converted to its corresponding hex value show division of 125 by 16 giving the quotient and remainder; | | # Q4. | 1 mark each for any correct answer. | 1 | |--|---| | Examples include: Hexadecimal is easier (for humans) to read (than binary); Hexadecimal is easier to convert (to binary) than denary; Numbers are displayed in a more compact way (in hexadecimal than in binary); It is quicker to type in (hexadecimal numbers than binary numbers); It is more accurate to type in (hexadecimal numbers than binary numbers); | | | R. anything that implies less memory is used. | | **O5**. | E; | 1 | | |----|---|--| | | | | #### **Q6.** 76: **2** If the answer given is 76 then reward any attempt at working; If the answer given is not 76 then a maximum of 1 mark can be awarded for any of the following working out stages: - Show multiplication of 4 by 16 and another number between 0 and 16 by 1 (i.e. allow C to be incorrectly converted to decimal). - Convert to binary 1001100 but then incorrectly converted to denary // convert to binary 01001100 but then incorrectly converted to denary. - Convert to a binary number other than 1001100, which must consist of more than 4 bits, but then convert this binary number to its correct decimal representation. #### **Q7.** #### 1100 1110; 2 If answer given is 11001110 then reward any attempt at working; If the answer given is not 11001110 then a maximum of 1 mark can be awarded for any of the following working out stages: - C or E (but not both) are converted to an incorrect binary representation but are then combined with the other correct representation. For example C is converted incorrectly to 1001 but E is converted correctly to 1110 and the answer given is 10011110; - C is converted to a denary number other than 12 and/or E is converted to a denary number other than 14 but both of the denary numbers are correctly converted to binary. - The candidate has attempted to multiply 16 by 12 and 1 by 14 but has then incorrectly converted the result into binary (through either an initial multiplication error or binary conversion error but not both). Q8. | lumber | Order (1 - 3) | |--------------------------|---------------| | The denary number 12 | 3 | | The binary number 1110 | 1 | | The hexadecimal number D | 2 | Q9. | - 4 | - | | | |-----|----|---|--| | | 5; | 1 | |